Summary of Alcohol Syntheses, Ch. 10 (and Review of Old Ones).

- Potassium (K) analogous.
- Key way to convert alcohol to alkoxide, reactive as S_N2 nucleophile and E2 base.

2 R-OH $\xrightarrow{1. \text{Na}}$ R-O-R'

- Alkoxide formation-S_N2 route to ether
- The electrophile R'-X must be S_N2 reactive, preferably 1° with a good leaving group

-Li is analogous for making RLi, which also act analogously.

-MgBr is spectator: $R \bigcirc$ is key.

R'MgBr
$$\xrightarrow{1. H_2CO}$$
 \xrightarrow{H} \xrightarrow{H} OH $\xrightarrow{2. H_3O^+}$ $\xrightarrow{1^{\circ}}$ alcohol

1 carbon Mech extension

R'MgBr
$$\xrightarrow{1. \text{ RCHO}}$$
 \xrightarrow{R} $\xrightarrow{R'}$ \xrightarrow{OH} $\xrightarrow{2^{\circ} \text{ alcohol}}$

Mech

Mech?

R'MgBr
$$\frac{1. \text{ R(R'')CO}}{2. \text{ H}_3\text{O}^+}$$
 $\frac{\text{R}}{\text{R'}}$ $\frac{\text{All three Mech}}{\text{R groups}}$ $\frac{\text{R}}{\text{S'}}$ alcohol $\frac{\text{R}}{\text{different.}}$

R'MgBr
$$\xrightarrow{\text{1. RCO}_2\text{R}}$$
 $\xrightarrow{\text{R'}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{R}}$ $\xrightarrow{\text{S'}}$ $\xrightarrow{\text{Alcohol}}$ $\xrightarrow{\text{m}}$ $\xrightarrow{\text{th}}$

At least 2 Mech R groups must be the same

8 O 1. R'MgBr OH R'MgBr
$$\xrightarrow{1. \text{ R'MgBr}}$$
 $\xrightarrow{1. \text{ R'MgBr}}$ $\xrightarrow{1. \text{ OH}}$ $\xrightarrow{R'}$ $\xrightarrow{R'}$ \xrightarrow{H} \xrightarrow{H}

2-Carbon Mech chain extension

Mech

Mech

NaBH₄ will Mech not react with esters

Review Routes to Alcohols

10
$$H_2O, H^+$$
 OH Markovnikov

11 R
$$\stackrel{\text{1. Hg(OAc)}_2, H_2O}{\longrightarrow}$$
 OH Markovnikov

12 R
$$\longrightarrow$$
 1. BH₃-THF 2. H₂O₂, NaOH R \longrightarrow OH anti-Markovnikov

Summary of Mechanisms, Ch. 10

For Test:

1.
$$R
ightharpoonup Property of Hamiltonian Property$$

2.
$$R
ightharpoonup OR'
ightharpoonup OH
ightharpoonup Quantum Qua$$

mech:
$$Z \ominus R Z =$$

3.
$$\triangle \frac{1. R^{\Theta}}{2. H_3O^{\oplus}} R^{OH}$$

mech: $R = R^{OH}$

10.1,2 Intro, Classification

"Alcohol": OH attached to a saturated, sp³, "alkyl" carbon

1°, 2°, 3° Alcohols: based on whether the carbon with the OH is 1°, 2°, or 3°

"Phenol": OH attached to an aromatic

-Note: phenol, not phenyl

"Enol" or "vinyl alcohol": OH attached to an alkene

Problem: Classify each of the following either as a phenol, as a carboxylic acid, or as a 1°, 2°, 3°, or vinyl alcohol:

10.3 Nomenclature

A. IUPAC, when alcohol is priority functional group and is part of the core name: x-alkanol

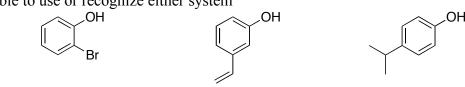
- Choose longest carbon chain that has the OH attached
- Remember to number!
- The oxygen itself does <u>not</u> count as a number

4-ethyl-3-heptanol

B. Cycloalkanols: The OH-carbon is automatically Number 1

C. <u>x-Alken-z-ol</u>. When an alkene is in the main carbon chain, you need two number descriptors, one for the alkene, the second for the alcohol.

- The OH still dictates the numbering
- The OH number gets moved right before the "ol"
- The alkene number goes in front, in front of the "alken" portion
- Note: you only put the OH number right in front of the "ol" when you have an alkenol (or alkynol)


D. Diols: x,y-alkanediol

E. Functional Group Priority: $CO_2H > C=O > OH > amine > alkene > halide$

- When you have more than one functional group, the higher priority dictates the numbering
- The higher priority is used in the "core name"
- The lower priority group may be forced to be named as a substituent

G. Common Names: Alkyl alcohol

- H. Substituted Phenols
 - IUPAC: use numbers, with OH carbon #1
 - Common:
 - o Ortho: 2-position, adjacent
 - Meta: 3-position, two carbons away
 - o Para: 4 position
 - Skill: be able to use or recognize either system

IUPAC:2-bromophenol3-vinylphenol4-isopropylphenolCommonortho-bromophenol or o-bromophenolmeta-vinylphenol or m-vinylphenolpara-isopropylphenol or p-isopropylphenol

10.4 Physical Properties: Dominated by H-Bonding

BP: Match the boiling point for the following structures: 35°, 137°, 187°

Water solubility: water solubility decreases as hydrophobic R gets longer

- In general,
 - o $R \le 4$ carbons, ROH substantially water soluble
 - o $R \ge 5$ carbons, ROH minimal water solubility

10.5 Commercially Important Alcohols

• Toxic: All alcohols are "toxic" if swallowed in sufficient quantities

CH₃OH	ОН	OH
 Cheap Solvent Fuel 100 mL → death 15 mL → blindness 	 200 mL (7 oz) → death Least toxic alcohol Alcoholic beverages Fermentation Solvent 	 Rubbing alcohol 100 mL → death Kills germs on skin, but not absorbed

10.6 Acidity of Alcohols and Phenols

A. Alcohols are weak acids \rightarrow can be ionized by stronger bases

$$ROH + B \longrightarrow RO + BH$$

- goes to the right (alkoxide) only if RO $\stackrel{\bigcirc}{}$ is more stable than B $\stackrel{\bigcirc}{}$
- ex. \bigcirc NH₂, \bigcirc CH₃
- ex. If a <u>less</u> stable oxygen anion can convert to a <u>more</u> stable oxygen anion

B. Acidity Table

Class	Structure	<u>Ka</u>	Acid Strength	<u>Anion</u>	Base Strength
Strong Acids	H-Cl	10^2	Most	Cl [⊖]	Least
Carboxylic Acid	ROH	10-5		R O⊖	
Phenol	OH	10 ⁻¹⁰			
Water	H ₂ O	10 ⁻¹⁶		НО⊖	
Alcohol	ROH	10 ⁻¹⁸		RO ⊖	
Amine (N-H)	RNH ₂	10 ⁻³³		RNH ⊖	
Alkane (C-H)	RCH ₃	10 ⁻⁵⁰	Least	RCH ₂ ⊖	Most

Notes/skills:

- 1. Be able to rank acidity.
- 2. Memorize/understand neutral OH acidity ranking: RCO₂H > H₂O > ROH
 - Reason: <u>resonance</u> stabilization of the <u>anion</u>
- 3. Predict deprotonation (acid/base) reactions
 - Any weak acid will be deprotonated by a stronger base (lower on table)
 - Any weak acid will not be deprotonated by a weaker base (higher on table)
- 4. Predict ether/water extraction problems
 - If an organic chemical is neutral and stays neutral, it will stay in ether layer
 - If an organic chemical is ionized (by an acid-base reaction), it will extract into the aqueous layer

Problems

1. Draw arrow to show whether equilibrium favors products or reactants. (Why?)

$$\bigcirc_{OH + H} \stackrel{O}{\longleftarrow}_{OH} \longrightarrow H_2O + H_2O \stackrel{O}{\longleftarrow}_{O} \stackrel{Resonance}{Stability}$$

2. Which of the following will deprotonate methanol?

H_2O	CH ₃ CO ₂ Na	PhONa	NaOH	$NaNH_2$	CH ₃ MgBr
No	No	No	No	Yes	Yes

3. When the following are dissolved in ether and then treated with NaOH/water, which would extract out of the ether layer into the water layer?

OH
$$HO^{\bigcirc}$$

$$+ H_2O$$

$$+ H_2O$$

$$+ H_2O$$

$$+ H_2O$$
No, stays neutral, stays in ether

Yes, converts to anion, water soluble Yes, converts to anion, water soluble

10.6B Formation of Sodium, Potassium Alkoxides; 2-Step Conversion of Alcohols into Ethers via the Alkoxides

1	$ \begin{array}{ccc} R-OH & \xrightarrow{Na} & R-ONa \\ R-OH & \xrightarrow{K} & R-OK \end{array} $	 Potassium (K) analogous. Key way to convert alcohol to alkoxide, reactive as S_N2 nucleophile and E2 base.
2	R-OH 1. Na 2. R'-X	 Alkoxide formation-S_N2 route to ether The electrophile R'-X must be S_N2 reactive, preferably 1° with a good leaving group

Reaction 1: Key source of nucleophilic/basic alkoxides

10.7 Synthesis of Alcohols: Review: See p. 2, from Alkyl Halides (S_N2) and Alkenes

10.8 Organometallics: RM (M = Metal) = R \bigcirc M \oplus

- 1. We will focus on the magnesium reagents RMgBr
- 2. RMgBr = "Grignard Reagents" (Victor Grignard)
- 3. Key: This is the way to make $R \bigcirc$, strong nucleophiles/bases
- 4. RMgBr are formed via redox reaction.
 - Mg gives up two electrons, is oxidized
 - Bromine is reduced to bromide anion
 - Carbon is reduced to carbanion

- 5. The formation of Grignard Reagents is completely general for all R-Halides:
 - 3°, 2°, and 1° alkyl halides all work well
 - Aryl and Vinyl halides as well as alkyl halides work well
 - RCl, RBr, and RI all work well
 - For class, we will normally use bromides, due to synthetic accessibility

6. View as carbanions: RMgBr = R^{\bigcirc} Super Strong Bases and Nucleophiles

- The counterion metal is a spectator
- Stability-reactivity principle: very unstable → very reactive
- This great reactivity is very useful (as nucleophile)
- This great reactivity (as base) has implication for proper technical use (see following)
- 7. Solvent and handling: Grignard reactants RMgBr must be made, stored, and handled in special solvents under special conditions:
 - No water allowed

$$\circ$$
 R $\stackrel{\bigcirc}{-}$ + H₂O → R-H + HO $\stackrel{\bigcirc}{-}$ Destroys carbanion

- No alcohol or amines or acids allowed either, or carbanion will just deprotonate them too
- If any chemicals with carbonyls are present, they too will react with the carbanion by nucleophile/electrophile reaction

$$R \xrightarrow{\bigcirc} + \xrightarrow{\bigcirc} \xrightarrow{\bigcirc} R$$

- Grignards and other organometallics are made in either alkane or ether solvents.
 - These don't have any acidic hydrogens that protonate carbanions.
 - o These don't have any carbonyls that react with carbanions
- 8. Two perspectives for dealing with organometallics in general and RMgBr in particular
 - Mechanistic Thinking: R [□]
 - Predict-the-product thinking: R-MgBr: easier to see source and substitution product.

10.9 Addition of RMgBr to Carbonyl Compounds: Alcohols are Produced

$$\mathbb{R}^{\bigcirc} \longrightarrow \mathbb{R}^{\bigcirc}$$

Exothermic Addition of Carbon or Hydrogen Anions:

- σ bond (made) stronger than π bond (broken)
- oxygen anion more stable than carbanion

Carbonyl is strongly electrophile

- -much stronger even than a 1° alkyl iodide!
 - 1. Breakable π bond
 - 2. Carbonyl polarity

Additions of Grignard Reagents to Carbonyl Compounds

Pattern:

- 1. After reaction, the original carbonyl carbon will have one and only one C-O single bond
- 2. For formaldehyde, aldehydes, and ketones, one R group adds (reactions 4-6)
- 3. For esters or carbonyl chlorides ("acid chlorides"), two R groups add
 - o Replace not only the carbonyl p-bond, but also the "extra" C-O or C-Cl single bond
- 4. Product output:
 - o Formaldehyde (2 H's) \rightarrow 1° alcohol
 - Aldehyde (1 H) \rightarrow 2° alcohol
 - \circ Ketone (0 H) \rightarrow 3° alcohol. No need for all 3 attachments to be the same.
 - Ester $(0 \text{ H}) \rightarrow 3^{\circ}$ alcohol. At least two common attachments at end.

Predicting Grignard Reaction Products

- 1. From carbonyl perspective:
 - The carbanion R' adds to the carbonyl carbon
 - The carbonyl =O gets replaced by –OH
 - For formaldehyde, aldehydes, and ketones: the two attachments on the original carbonyl carbon remain attached as spectators
 - For esters or acid chlorides: the one non-heteroatom attachment on the original carbonyl carbon remain attached as spectators.
 - o The "extra" heteroatom gets replaced by a second carbanion R'
- 2. From Grignard perspective:
 - Where R-MgBr begins, R-C-OH ends.
 - o In other words, the MgBr gets replaced by the carbonyl carbon

Note: Be sure that in the product, no carbon has more than one C-O bond

Draw products from the following reactions.

1°, 2° or 3°?

1
$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{$

5 Br
$$\frac{1. \text{ Mg}}{3. \text{ H}_3\text{O}^+}$$
 $\frac{\text{OH}}{\text{CH}_3}$ $\frac{\text{OH}}{\text{CH}_3}$ $\frac{\text{OH}}{\text{CH}_3}$

10.9E Grignard Reaction with Ethylene Oxide (Simplest Epoxide)

Notes

- 1. Results in a 1° Alcohol
- 2. Predicting product: Two carbons end up in between the carbanion R' and the OH
- 3. Ethylene oxide and formaldehyde are complementary Grignard acceptors leading to 1° alcohols
 - o Ethylene oxide extends the carbon chain by two (relative to the original RMgBr)
 - o Formaldehyde extends the carbon chain by one (relative to the original RMgBr)
- 4. 2-Carbon ethylene oxide and 2-carbon ethanal give different products
 - \circ Ethylene oxide \rightarrow the OH is 1° and the OH is two carbons removed from the carbanion R
 - o Ethanal→ the OH is 2° and the OH and carbanion R are both connected to the same carbon

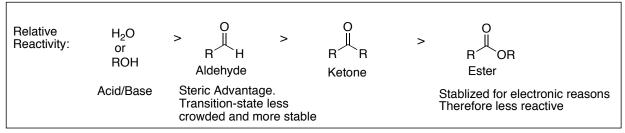
Draw products from the following reactions.

Reaction Mechanisms for Grignard Reactions

Formaldehyde, Aldehyde, or Ketone as Carbonyl Compound (Reactions 4, 5, and 6)

aldehyde or ketone or formaldehyde
$$R'' = \frac{1 \cdot R' - OH}{2 \cdot H_3O} + R'' = \frac{OH}{R''} + \frac{OH}{R'$$

- 1. Two simple steps:
 - a. Addition
 - b. Protonation
- 2. Timing:
 - a. The carbanion is added first, at one step in time, under strongly anionic conditions
 - b. Later acid is added, in a second laboratory step. This provides a cationic environment
- 3. $RMgBr = R-MgBr = R \ominus carbanion$
 - a. The ^① MgBr stuff is spectator, doesn't need to be drawn in
 - b. Ignore in mechanisms
 - c. In reality, it actually does play a nontrivial role, but we'll save that for grad school!


Draw mechanisms for the following reactions:

1
$$\frac{1. \text{ PhMgBr}}{2. \text{ H}_3\text{O}^+}$$
 $\frac{OH}{Ph}$ $\frac{1. \text{ PhMgBr}}{2. \text{ H}_3\text{O}^+}$ $\frac{OH}{Ph}$

Esters or Acid Chlorides: More Complex, Needs to Explain Two Additions and More Bond Breakings

- 1. Four Step Mechanism:
 - a. Addition
 - b. Elimination
 - c. Addition
 - d. Protonation
- 2. Timing:
 - a. The carbanion is added first, at one point in time, under strongly anionic conditions
 o The first three steps all occur under these anionic conditions
 - b. Acid is only added much later, in a second laboratory step. This gives a cationic
 - b. Acid is only added much later, in a second laboratory step. This gives a cationic environment.
 - c. Why don't you just protonate after the first step?
 - o There is no proton source available, and the elimination proceeds instead!
- 3. What if I add only one RMgBr?

Why? Kinetics and Reactivity. **MEMORIZE**.

- Large differences in reactivity, with ketone > ester
- Elimination step 2 is also very fast
- Thus, under the anionic conditions, the addition is the slow step
 - o After it does happen, elimination and another addition happens bang-bang.

Draw Mechanism:

<u>Cyclic Ester:</u> The O-Carbonyl single bond breaks, but the other C-O single bond does <u>not</u> break -the result is formation of a dialcohol

Draw product and mechanism for the following:

Ethylene Oxide Mechanism

Draw product and mechanism for the following:

More Grignard Practice. Including polyfunctional Molecules: (Know relative reactivity)

2
$$H_3CO$$

1. PhMgBr (1.0 equivalent)

2. H_3O^+

1. PhMgBr (1.0 equivalent)

Ph

5 BrMg
$$\underbrace{\begin{array}{c} 0 \\ 1. \\ \hline 2. H_3 \\ \end{array}}_{OH}$$

7
$$O$$
1. $CH_3MgBr (excess)$
2. H_3O
OH

8 BrMg
$$\underbrace{\begin{array}{c} 1. & \bigcirc \\ \hline 2. & H_3 \bigcirc \end{array}}$$
 HO $\underbrace{\phantom{\begin{array}{c}} \\ \\ \end{array}}$

Grignards in Synthesis: Provide Precursors.

- Think backwards from Targets to Reactants.
 Identify possible Grignards and Grignard acceptors
- Pattern:

d.

- 3° alcohol, all three attachments different ← Ketone Precursor
- 3° alcohol, two (or more) of the attachments identical ← Ester
- 2° alcohol ← Aldehyde
- 1° alcohol ← Formaldehyde or ethylene oxide

Ph-MgBr + O

<u>Provide Reagents for the Following Transformations.</u> You may use whatever reagents, including ketones or aldehydes or Grignards or esters, that you need.

- Key: Try to identify key C-C connection in the product that wasn't present to start with
- Try to identify the where the reactant carbons are in the final product
- Numbering your carbon chains is very helpful.
- Usually best to work backwards from the product

Br
$$\frac{1. \text{ Mg}}{0}$$
 $2. \text{ H}$
 $3. \text{ H}_3\text{O}^+$

e.

Combining Grignard Reactions with Other Reactions

1. Mg

O

2.
3.
$$H_3O^+$$

PhBr

4. H_2SO_4
5. BH_3 -THF
6. NaOH- H_2O_2

10.10 Restrictions on Grignard Reactions

- RMgBr = R \bigcirc carbanion, highly unstable, highly reactive.
- Unstable in the presence of:
 - 1. OH's (get proton transfer reaction)
 - 2. Carbonyls (get Grignard-type nucleophilic addition)
- 1. Solvent limitations. RMgBr cannot be formed and used in the presence of
 - H2O

b.

- ROH
- Any solvent with a C=O

2. Substrate limitations. Any organohalide that also contains an OH or C=O bond can't be converted into a useful RMgBr, because it will self-destruct.

Which substrates could be converted into RMgBr, and subsequently reacted with CH₃CHO?

- 3. Atmosphere/Glassware/Storage limitations. Make, store, and use in:
 - water-free dried glassware
 - moisture-free atmosphere. (Dried air, or else under nitrogen or argon atmosphere)
 - When stored for extended periods, must have very good seals so that no air can leak in.

10.11 Alcohols by Reduction of Carbonyls: H [○] Addition

9 O NaBH₄ or
$$\frac{1. \text{ LiAlH}_4}{2. \text{ H}_3\text{O}^+}$$
 OH Mech Mech

10 O NaBH₄ or
$$\frac{1. \text{ LiAlH}_4}{\text{CH}_3\text{OH}}$$
 or $\frac{1. \text{ LiAlH}_4}{2. \text{ H}_3\text{O}^+}$ OH Mech ketone $\frac{1. \text{ LiAlH}_4}{\text{CH}_3\text{OH}}$ OH $\frac{1. \text{ LiAlH}$

11 O NaBH₄ will Mech not react with esters

1. LiAlH₄ OH
$$H$$
 H esters

Mechanism

Aldehydes and Ketones

aldehyde or ketone or formaldehyde

$$NaBH_4 = H^{\bigcirc}$$

$$LiAlH_4 = H^{\bigcirc}$$

mech:
$$H_3O^{\oplus}$$
 OH H_3O^{\oplus} OH H_3O^{\oplus}

Esters

Cyclic Esters

Notes:

- Mechanisms are exactly like with Grignard reactions
- LiAlH₄ and NaBH₄ function as hydride anions H [○]
- For mechanisms, just draw H $^{\bigcirc}$ rather than trying to involve the Li and Al and Na and B...

$$NaBH_{4} = Na \stackrel{\oplus}{H} \stackrel{\ominus}{H} \stackrel{\ominus}{H} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow$$

- Boron is one row higher than aluminum, and in keeping with normal periodic patterns is more electronegative
 - \circ Because boron is more electronegative, the BH₄ $^{\bigcirc}$ anion is more stable, and less reactive.
 - The boron holds the H $^{\bigcirc}$ more tightly.
 - $\circ~$ Aluminum being less electronegative doesn't attract and hold the H $^{\bigcirc}~$ as well, and thus is considerably more reactive.

Reactivity

	Aldehydes	Ketones	Esters
LiAlH ₄	Yes	Yes	Yes
NaBH ₄	Yes	Yes	No

LiAlH₄ is much stronger, NaBH₄ much weaker

- 1. LiAlH₄ is strong enough to react with esters, NaBH₄ isn't
- 2. **Selective reduction**: if both an ester and an aldehyde/ketone are present:
 - LiAlH₄ reduces both
 - NaBH₄ selectively reduces the aldehyde/ketone but leaves the ester untouched
- 3. <u>LiAlH₄ is strong enough to react with and be destroyed by water or alcohol; NaBH₄ isn't</u>

$$LiAlH_4 + H_2O \rightarrow H_2(gas) + LiOH + AlH_3 + heat$$

- a. As a result, LiAlH₄ is harder to use and store
- b. Acid has to be added in a subsequent step with the LiAlH₄; (thus, 2-step recipe)
- c. NaBH₄ can be run in alcohol solvent which serves as a proton source for protonating alkoxide
- d. Solvent restrictions, glassware must be dry, wet air must be excluded, etc.
- e. Because NaBH₄ is stable to water, it's easier to handle in air, easier to store, much easier to work with
- f. Default: for a simple aldehyde or ketone reduction, normally use NaBH₄ because it's so much easier
- 4. LiAlH₄ is strong enough to react with esters, NaBH₄ isn't

Draw the products for the following reactions.

OCH₃ but NaBH₄ not
$$H_2O$$
 Ph OH

 $C_8H_8O_2$

Draw the mechanism for the following reaction.

7.