Chem 350 Jasperse Ch. 10 Handouts 1 **Summary of Alcohol Syntheses, Ch. 10 (and Review of Old Ones).**

10.1,2 Intro, Classification

"**Alcohol**": OH attached to a saturated, sp³, "alkyl" carbon

1º, 2º, 3º Alcohols: based on whether the carbon with the OH is 1º, 2º, or 3º

Problem: Classify each of the following either as a phenol, as a carboxylic acid, or as a 1º, 2º, 3º, or vinyl alcohol:

10.3 Nomenclature

- A. IUPAC, when alcohol is priority functional group and is part of the core name: x-alkan**ol**
- Choose longest carbon chain **that has the OH attached**
- Remember to number!
- The oxygen itself does not count as a number

OH Cl Cl

4,4-dichloro-2-propyl-1-pentanol

4-ethyl-3-heptanol

B. Cycloalkanols: The OH-carbon is automatically Number 1

OH cis-2-allylcyclohexanol

C. **x-Alken-z-ol**. When an alkene is in the main carbon chain, you need two number descriptors, one for the alkene, the second for the alcohol.

- The OH still dictates the numbering
- The OH number gets moved right before the "ol"
- The alkene number goes in front, in front of the "alken" portion
- Note: you only put the OH number right in front of the "ol" when you have an alkenol (or alkynol)

OH (E)-4-hexen-2-ol or trans-4-hexen-2-ol

D. Diols: x,y-alkane**diol**

- E. Functional Group Priority: $CO₂H > C=O > OH >$ amine > alkene > halide
	- When you have more than one functional group, the higher priority dictates the numbering
	- **The higher priority is used in the "core name"**
	- **The lower priority group may be forced to be named as a substituent**
- F. OH as a Substituent: "**Hydroxy**"

Common ortho-bromophenol or o-bromophenol

meta-vinylphenol or m-vinylphenol

para-isopropylphenol or p-isopropylphenol

10.4 Physical Properties: Dominated by H-Bonding

BP: Match the boiling point for the following structures: 35º, 137º, 187º

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$
\n
$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}
$$

Water solubility: water solubility decreases as hydrophobic R gets longer

- In general,
	- \circ R \leq 4 carbons, ROH substantially water soluble
	- \circ R \geq 5 carbons, ROH minimal water solubility

10.5 Commercially Important Alcohols

• Toxic: All alcohols are "toxic" if swallowed in sufficient quantities

10.6 Acidity of Alcohols and Phenols

A. Alcohols are weak acids \rightarrow can be ionized by stronger bases

$$
ROH + B^{\ominus} \implies RO^{\ominus} + BH
$$

• goes to the right (alkoxide) only if
$$
RO^{\ominus}
$$
 is more stable than B^{\ominus}

$$
\bullet \quad \text{ex.} \quad \ominus_{\text{NH}_2,} \quad \ominus_{\text{CH}_3}
$$

• ex. If a less stable oxygen anion can convert to a more stable oxygen anion

B. Acidity Table

Notes/skills:

- 1. Be able to rank acidity.
- 2. Memorize/understand neutral OH acidity ranking: $RCO₂H > H₂O > ROH$
• Reason: **resonance** stabilization of the **anion**
	- Reason: **resonance** stabilization of the **anion**
- 3. Predict deprotonation (acid/base) reactions
	- Any weak acid **will be** deprotonated by a **stronger base (lower** on table)
	- Any weak acid **will not be** deprotonated by a **weaker base (higher** on table)
- 4. Predict ether/water extraction problems
	- If an organic chemical is neutral and stays neutral, it will stay in ether layer
	- If an organic chemical is ionized (by an acid-base reaction), it will extract into the aqueous layer

Problems

1. Draw arrow to show whether equilibrium favors products or reactants. (Why?)

$$
\odot_{OH + H} \overset{O}{\longrightarrow}_{OH} \xrightarrow{\qquad \qquad } H_2O + \overset{O}{\downarrow}_{H} \overset{F}{\longrightarrow} \xrightarrow{Resonance}
$$

2. Which of the following will deprotonate methanol?

3. When the following are dissolved in ether and then treated with NaOH/water, which would extract out of the ether layer into the water layer?

10.6B Formation of Sodium, Potassium Alkoxides; 2-Step Conversion of Alcohols into Ethers via the Alkoxides

$\frac{Na}{1}$ R-ONa R -OH $R-O$ $R-OH \xrightarrow{K} R-OK$	Potassium (K) analogous. Key way to convert alcohol to alkoxide, reactive as S_N2 nucleophile and E ₂ base.
$\frac{1. \text{ Na}}{2. \text{ R}' \cdot X}$ R-O-R' R -OH	Alkoxide formation- S_N 2 route to ether The electrophile R'-X must be S_N2 reactive, preferably 1° with a good leaving group

Reaction 1: Key source of nucleophilic/basic alkoxides

10.7 Synthesis of Alcohols: Review: See p. 2, from Alkyl Halides (S_N^2) and Alkenes

10.8 Organometallics: RM (M = Metal) = R^{\ominus} M $^{\oplus}$

- 3 R-Br $\frac{Mg}{\sqrt{g}}$ RMgBr R Br RLi + LiBr 2Li "Grignard Reagent" -Li is analogous for making RLi, which also act analogously. -MgBr is spectator: R^{\ominus} is key.
- 1. We will focus on the magnesium reagents RMgBr
- 2. RMgBr = "Grignard Reagents" (Victor Grignard)
- 3. Key: This is the way to make R^{\ominus} , strong nucleophiles/bases
- 4. RMgBr are formed via redox reaction.
	- Mg gives up two electrons, is oxidized
	- Bromine is reduced to bromide anion
	- Carbon is reduced to carbanion

$$
\overbrace{R-Br}^{\bigcirc} + \overbrace{Mg}^{\bullet} \longrightarrow R^{\bullet} + Br^{\circ} + Mg^{\bullet} \longrightarrow R^{\bullet} + Br^{\ominus} + Mg^{\stackrel{\circ}{2}+} \qquad \text{Not for Test}
$$

- 5. The formation of Grignard Reagents is completely general for all R-Halides:
	- 3º, 2º, and 1º alkyl halides all work well
	- Aryl and Vinyl halides as well as alkyl halides work well
	- RCl, RBr, and RI all work well
	- For class, we will normally use bromides, due to synthetic accessibility

6. <u>Yiew as carbanions: $RMgBr = R^{\odot}$ Super Strong Bases and Nucleophiles</u>

- The counterion metal is a spectator
- Stability-reactivity principle: very unstable \rightarrow very reactive
- This great reactivity is very useful (as nucleophile)
- This great reactivity (as base) has implication for proper technical use (see following)
- 7. Solvent and handling: Grignard reactants RMgBr must be made, stored, and handled in special solvents under special conditions:
	- No water allowed
		- \circ \mathbb{R}^{\ominus} + H₂O \rightarrow R-H + HO \ominus Destroys carbanion
	- No alcohol or amines or acids allowed either, or carbanion will just deprotonate them too
	- If any chemicals with carbonyls are present, they too will react with the carbanion by nucleophile/electrophile reaction

- o • Grignards and other organometallics are made in either alkane or ether solvents.
	- o These don't have any acidic hydrogens that protonate carbanions.
		- o These don't have any carbonyls that react with carbanions
- 8. Two perspectives for dealing with organometallics in general and RMgBr in particular
	- Mechanistic Thinking: R^{\ominus}
	- Predict-the-product thinking: R-MgBr: easier to see source and substitution product.

 $R - Br \xrightarrow{m \cdot g} R - MgBr$ Mg **Electrophile** R-Electrophile 10.9 Addition of RMgBr to Carbonyl Compounds: Alcohols are Produced

- Exothermic Addition of Carbon or Hydrogen Anions:
	- σ bond (made) stronger than π bond (broken)
	- oxygen anion more stable than carbanion

Carbonyl is strongly electrophile -much stronger even than a 1º alkyl iodide!

- 1. Breakable π bond
- 2. Carbonyl polarity

Additions of Grignard Reagents to Carbonyl Compounds From Carbonyl's Perspective From Grignard's Perspective

4
$$
H^{\prime}H
$$
 $H^{\prime}H$ $H^{\$

Pattern:

- 1. After reaction, the original carbonyl carbon will have one and only one C-O single bond
- 2. For formaldehyde, aldehydes, and ketones, one R group adds (reactions 4-6)
- 3. For esters or carbonyl chlorides ("acid chlorides"), two R groups add
- o Replace not only the carbonyl p-bond, but also the "extra" C-O or C-Cl single bond 4. Product output:
	- o Formaldehyde $(2 \text{ H's}) \rightarrow 1^\circ$ alcohol
	- \circ Aldehyde (1 H) \rightarrow 2° alcohol
	- \circ Ketone (0 H) \rightarrow 3° alcohol. No need for all 3 attachments to be the same.
	- \circ Ester (0 H) \rightarrow 3° alcohol. At least two common attachments at end.

Predicting Grignard Reaction Products

- 1. From carbonyl perspective:
	- The carbanion \overline{R} adds to the carbonyl carbon
	- The carbonyl $=$ O gets replaced by $-OH$
	- For formaldehyde, aldehydes, and ketones: the two attachments on the original carbonyl carbon remain attached as spectators
	- For esters or acid chlorides: the one non-heteroatom attachment on the original carbonyl carbon remain attached as spectators.
		- o The "extra" heteroatom gets replaced by a second carbanion R'
- 2. From Grignard perspective:
	- Where R-MgBr begins, R-C-OH ends.
		- o In other words, the MgBr gets replaced by the carbonyl carbon

Note: Be sure that in the product, no carbon has more than one C-O bond

Draw products from the following reactions.

10.9E Grignard Reaction with Ethylene Oxide (Simplest Epoxide)

Notes

- 1. Results in a 1º Alcohol
- **2. Predicting product: Two carbons end up in between the carbanion R' and the OH**
- 3. Ethylene oxide and formaldehyde are complementary Grignard acceptors leading to 1º alcohols
	- \circ Ethylene oxide extends the carbon chain by two (relative to the original RMgBr)
	- o Formaldehyde extends the carbon chain by one (relative to the original RMgBr)
- 4. 2-Carbon ethylene oxide and 2-carbon ethanal give different products
	- \circ Ethylene oxide \rightarrow the OH is 1^o and the OH is two carbons removed from the carbanion R
	- \circ Ethanal \rightarrow the OH is 2° and the OH and carbanion R are both connected to the same carbon

Draw products from the following reactions.

Reaction Mechanisms for Grignard Reactions

Formaldehyde, Aldehyde, or Ketone as Carbonyl Compound (Reactions 4, 5, and 6)

- 1. Two simple steps:
	- **a. Addition**
	- **b. Protonation**
- 2. Timing:
	- a. The carbanion is added first, at one step in time, under strongly anionic conditions
	- b. Later acid is added, in a second laboratory step. This provides a cationic environment
- 3. RMgBr = R-MgBr = R \odot carbanion
	- a. The Θ MgBr stuff is spectator, doesn't need to be drawn in
	- b. Ignore in mechanisms
	- c. In reality, it actually does play a nontrivial role, but we'll save that for grad school!

Draw mechanisms for the following reactions:

Esters or Acid Chlorides: More Complex, Needs to Explain Two Additions and More Bond Breakings

- 1. Four Step Mechanism:
	- **a. Addition**
	- **b. Elimination**
	- **c. Addition**
	- **d. Protonation**
- 2. Timing:
	- a. The carbanion is added first, at one point in time, under strongly anionic conditions o The first three steps all occur under these anionic conditions
	- b. Acid is only added much later, in a second laboratory step. This gives a cationic environment.
	- c. Why don't you just protonate after the first step?
	- o There is no proton source available, and the elimination proceeds instead!
- 3. What if I add only one RMgBr?

Why? Kinetics and Reactivity. **MEMORIZE**.

- Large differences in reactivity, with ketone \geq ester
- Elimination step 2 is also very fast
- Thus, under the anionic conditions, the addition is the slow step
	- o After it does happen, elimination and another addition happens bang-bang.

Draw Mechanism:

Cyclic Ester: The O-Carbonyl single bond breaks, but the other C-O single bond does **not** break -the result is formation of a dialcohol

Draw product and mechanism for the following:

Ethylene Oxide Mechanism

Draw product and mechanism for the following:

Grignards in Synthesis: Provide Precursors.

- **Think backwards from Targets to Reactants.**
- Identify possible Grignards and Grignard acceptors
• Pattern
- **Pattern:**
	- **3[°] alcohol, all three attachments different** \leftarrow **Ketone Precursor
• 3**[°] alcohol, two (or more) of the attachments identical \leftarrow Ester
	- 3° alcohol, two (or more) of the attachments identical \leftarrow Ester
	- 2° **alcohol** \leftarrow **Aldehyde**
	- 1° **alcohol** \leftarrow **Formaldehyde** or **ethylene oxide**

Provide Reagents for the Following Transformations. You may use whatever reagents, including ketones or aldehydes or Grignards or esters, that you need.

- Key: Try to identify key C-C connection in the product that wasn't present to start with
- Try to identify the where the reactant carbons are in the final product
- Numbering your carbon chains is very helpful.
• Isually best to work backwards from the production
- Usually best to work backwards from the product

10.10 Restrictions on Grignard Reactions

- $RMgBr = R^{\ominus}$ carbanion, highly unstable, highly reactive.
- Unstable in the presence of:
	- 1. OH's (get proton transfer reaction)
	- 2. Carbonyls (get Grignard-type nucleophilic addition)
- 1. Solvent limitations. RMgBr cannot be formed and used in the presence of
	- H2O
• ROH
	- ROH
	- Any solvent with a $C=O$

2. Substrate limitations. Any organohalide that also contains an OH or C=O bond can't be converted into a useful RMgBr, because it will self-destruct.

3. Atmosphere/Glassware/Storage limitations. Make, store, and use in:

- water-free dried glassware
- moisture-free atmosphere. (Dried air, or else under nitrogen or argon atmosphere)
- When stored for extended periods, must have very good seals so that no air can leak in.

Double Protonation

10.11 Alcohols by Reduction of Carbonyls: H^{\ominus} Addition

Notes:

- Mechanisms are exactly like with Grignard reactions
- LiAlH₄ and NaBH₄ function as hydride anions H \odot
- For mechanisms, just draw H^{\ominus} rather than trying to involve the Li and Al and Na and B…

$$
\left[\begin{matrix}NaBH_4 =& Na\end{matrix}\begin{matrix}H\\H-B-H\\H\end{matrix}\begin{matrix}H\\H-B\end{matrix}\begin{matrix}H\\H\end{matrix}\begin{matrix}H\\H\end{matrix}\begin{matrix}\vdots\\H\end
$$

- Boron is one row higher than aluminum, and in keeping with normal periodic patterns is more electronegative
	- \circ Because boron is more electronegative, the BH₄ \odot anion is more stable, and less reactive.
		- **•** The boron holds the H \odot more tightly.
	- \circ Aluminum being less electronegative doesn't attract and hold the H \odot as well, and thus is considerably more reactive.

Reactivity

LiAlH4 is much stronger, NaBH4 much weaker

- 1. Li \overline{A} IH₄ is strong enough to react with esters, NaBH₄ isn't
- 2. **Selective reduction**: if both an ester and an aldehyde/ketone are present:
	- LiAlH₄ reduces both
	- NaBH₄ selectively reduces the aldehyde/ketone but leaves the ester untouched
- **3. LiAlH4 is strong enough to react with and be destroyed by water or alcohol; NaBH4 isn't**

 $LiAlH_4 + H_2O \rightarrow H_2(gas) + LiOH + AlH_3 + heat$

- a. As a result, $LiAlH₄$ is harder to use and store
- b. Acid has to be added in a subsequent step with the $LiAlH₄$; (thus, 2-step recipe)
- c. NaBH₄ can be run in alcohol solvent which serves as a proton source for protonating alkoxide
- d. Solvent restrictions, glassware must be dry, wet air must be excluded, etc.
- e. Because NaBH4 is stable to water, it's easier to handle in air, easier to store, much easier to work with
- **f. Default: for a simple aldehyde or ketone reduction, normally use NaBH4 because it's so much easier**
- 4. LiAlH₄ is strong enough to react with esters, NaBH₄ isn't

Draw the mechanism for the following reaction.

